Physics of Electrons in Two-Dimension

Jongsoo Yoon

University of Virginia

In 2D, all electronic states are localized (scaling theory of localization)

1D — localized
2D — localized

Scaling theory of localization (disorder effect)

3D — minimum metallic conductivity
Physics of Electrons in Two-Dimension

Jongsoo Yoon
University of Virginia

In 2D, all electronic states are localized (scaling theory of localization)

Various energy scales:

- Thermal energy: $E_T = k_B T$ × low temperatures
- Fermi energy: $E_F = \frac{\pi h^2 n}{m^*}$
- Coulomb energy: $E_C = \frac{e^2 \sqrt{\pi n}}{\varepsilon}$ × high density
- e-e interaction
- Superconducting interaction
- Disorder

At low densities, Coulomb energy is dominant. ⇒ electron crystal (Wigner Crystal)
Search for Wigner crystal
electrons confined in semiconductor interface under high magnetic fields

(integer) quantum Hall effect

Electrons under magnetic fields \[\vec{B} = B\hat{z}, \quad \vec{A} = -By\hat{x} \quad (\vec{B} = \nabla \times \vec{A}) \]

Development of Landau level

Hamiltonian, \[\hat{H} = \frac{1}{2m} \left(\hat{p} - e \frac{A}{c} \right)^2 = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + \frac{1}{2m} \left(-i\hbar \frac{\partial}{\partial x} - eB \right)^2 \]

With a solution of the form \[\Psi = \chi(y) e^{i(k_x x + k_z z)} \]

the Schrödinger equation, \[\varepsilon \chi = \frac{\hbar^2 k_z^2}{2m} \chi + \frac{\hat{p}_y^2}{2m} \chi + \frac{1}{2} m \omega_c^2 (y - y_0)^2 \chi \quad \left(y_0 = \frac{\hbar c}{eB} k_x = \frac{\hbar k_x}{m \omega_c} \right) \]

simple harmonic motion in y-direction : \[\varepsilon_n = \frac{\hbar^2 k_z^2}{2m} + \hbar \omega_c \left(n + \frac{1}{2} \right) \quad : \text{each energy level } \rightarrow \text{ Landau level} \]

Level degeneracy \[\left\{ y_0 \text{ is the center of the harmonic oscillation} \right\} \quad 0 < y_0 = \frac{\hbar k_x}{m \omega_c} = \frac{\hbar}{m \omega_c} \frac{2\pi l_x}{L} < L \]

\[\therefore 0 < l_x < \frac{m \omega_c L^2}{\hbar} \] \[\therefore k_x = \frac{2\pi}{L} l_x \quad \text{from the boundary condition} \quad \Psi(x) = \Psi(x + L) \]

The number of oscillators at each level, \[f = \frac{m \omega_c L^2}{\hbar} = \frac{eB L^2}{\Phi_0} = \frac{BL^2}{\Phi_0} = \frac{L^2}{2\pi B} \quad \left(\therefore \omega_c = \frac{eB}{mc}, \quad \frac{\hbar c}{e} = \Phi_0, BL^2 = \Phi \right) \]

The level degeneracy increases with magnetic fields !

At a higher field, each level can accommodate more electrons.

Less levels are filled with increasing fields !

Successive Landau level emptying (crossing) causes \[\text{de Haas van Alphen oscillation} \]

Shubnikov de Haas oscillation
Question:
What happens at the exact field where n-th level is fully filled and (n+1)-th level is completely empty?

Generalizing the classical Hall effect, \(E_y = -\frac{B}{\rho \text{nec}} j_x = \rho_{yx} j_x \)

\[
\begin{pmatrix}
 j_x \\
 j_y
\end{pmatrix}
=
\begin{pmatrix}
 \sigma_{xx} & \sigma_{xy} \\
 \sigma_{yx} & \sigma_{yy}
\end{pmatrix}
\begin{pmatrix}
 E_x \\
 E_y
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
 E_x \\
 E_y
\end{pmatrix}
=
\begin{pmatrix}
 \rho_{xx} & \rho_{xy} \\
 \rho_{yx} & \rho_{yy}
\end{pmatrix}
\begin{pmatrix}
 j_x \\
 j_y
\end{pmatrix}
\]

\[\therefore \sigma_{xx} = \sigma_{yy} = \frac{\rho_{xx}}{\rho_{xx}^2 + \rho_{xy}^2}\]
\[\sigma_{xy} = -\sigma_{yx} = -\frac{\rho_{xy}}{\rho_{xx}^2 + \rho_{xy}^2}\]

\[\text{no mobile electrons} \quad \therefore \sigma_{xx} = 0 \quad \rho_{xx} = 0\]

If \(\sigma_{xx} = \rho_{xx} = 0 \) then \(\rho_{xy} = -\frac{1}{\sigma_{xy}} = \frac{B}{\rho \text{nec}}\)

At exact level filling, zero longitudinal resistance and quantized Hall resistance.

quantum Hall state
Search for Wigner crystal …… continues…
with lower electron densities (cleaner sample) under high magnetic field

(integer) quantum Hall effect

Fractional quantum Hall effect

Stomer, H. L. Physica B 177, 401 (1992)

Single electron phenomenon

Collective phenomenon
Composite Fermion Picture

\[\nu = \frac{3}{7} \]

\[\frac{1}{2} \quad \frac{4}{9} \quad \frac{2}{5} \quad \frac{1}{3} \]

Fractional Quantum Hall states in electrons = Integer Quantum Hall states in composite Fermions

\[\nu = 4 \quad 3 \quad 2 \quad 1 \]

Stomer, H. L. Physica B 177, 401 (1992)
Search for Wigner crystal …… continues… and continues… with even lower electron densities (even cleaner sample) under ZERO FIELD.

![Graphs showing resistance (ρ) vs. temperature (T) for different materials: Si-MOSFET and p-GaAs/AlGaAs.](image)

Strongly Insulating
\[
\left(\frac{d\rho}{dT} \ll 0 \right)
\]

Decreasing Disorder
\[
\left(\text{increasing density} \right)
\]

Weakly insulating
\[
\left(\frac{d\rho}{dT} \leq 0 \right)
\]

Abrahams, Anderson, Licciardello, and Ramakrishnan, PRL (1979)
(Scaling theory of localization)

Kravchenko et. al. (1995)
Sarachik and Kravchenko (1999)

Yoon, Shahar, Tsui, and Shayegan, PRL (1999)

Unexpected metallic ground state!
2D Fermi system

Theory says ... all 2D states are localized (insulators)

But, strong **Coulomb interaction** stabilizes a **metallic phase.**

2D Bose system

Can superconducting interaction stabilize a metallic phase?

Theory says ... **No. It is insulating** if the global superconductivity is suppressed.

Finkelshtein, LETP Lett. (1979)

Fisher, Grinstein, and Girvin, PRL (1990) : *“dirty boson” model*

But, experiments found a **metallic phase.**
How does the phase change occur in 2D superconductors?

Superconductor – Insulator Transition

- Resistance (ρ)
- Temperature (T)
- T_c
- Superconducting phase
- Insulating phase

Superconductor – Metal – Insulator Transition

- Resistance (ρ)
- Temperature (T)
- T_c
- Superconducting phase
- Metallic phase
- Insulating phase

Increasing B, or disorder