

The future via the past: Effective Field Theory searches for new physics at JADE, LHC, and future colliders

Jon S. Wilson

Baylor University

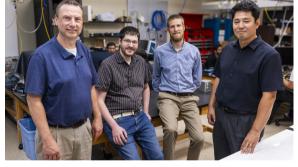
2025 November 12

 J.S. Wilson (BU)
 The future via the past
 12 Nov 2025
 1 / 35

Baylor University

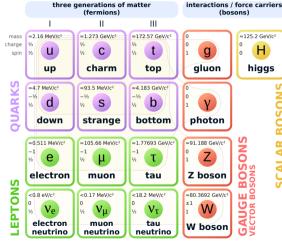
- ► Medium-sized private R1 university
- ► Affiliated with the Baptist Church
- Central Texas, between Dallas and Austin
- ► Chartered in 1845 by the Republic of Texas oldest university in the state

2024 total eclipse passed right across Baylor

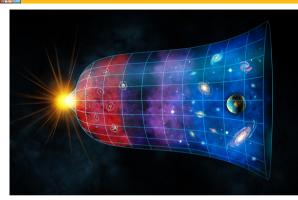

Department of Physics and Astronomy

- ▶ 20 faculty, \sim 50 majors, \sim 50 grad students
- ► Broad range of research:
 - Astrophysics: observational cosmology, stellar evolution
 - Space physics: dusty plasmas, hypervelocity impacts
 - Cosmology, strings, gravity
 - Ultrafast spectroscopy & nonlinear optics
 - Surface physics and Raman spectroscopy
 - Quantum dots, nanoscale fabrication, structure-property relationship
 - Nonlinear dynamics
 - Particle theory and lattice QCD
 - Experimental particle physics

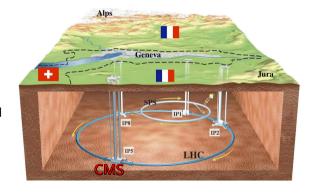
- ► Experimental HEP group at Baylor
- ► Established 2003 (CDF experiment)
- ► Four faculty, 3 postdocs, 6 grad students, ~5 undergrads
- Working primarily on the CMS experiment
- Studying Higgs boson, top quark, SUSY, exotica, Effective Field Theory
- Trigger, data-quality monitoring, reconstruction, hadron calorimeter upgrade and operations, endcap calorimeter upgrade
- Developing advanced calorimeters for future colliders (CalVision)


(left to right) Jay Dittmann, JSW, Andrew Brinkerhoff, and Kenichi Hatakeyama

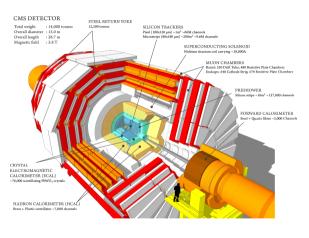
- The standard model of particle physics is the most successful scientific theory yet
 - Explains (almost) all phenomena across a huge range of scales
 - Includes all known fundamental particles
 - Final predicted particle, the Higgs boson, discovered in 2012
 - All known interactions except gravity
 - Has withstood vast array of extremely precise measurements for half a century
 - Only 19 free parameters


Standard Model of Elementary Particles

Shortcomings



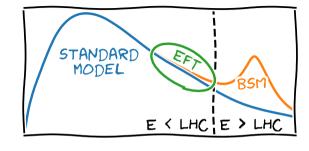
- ► The SM cannot explain:
 - ► Gravity
 - Cosmic inflation
 - Dark energy
 - Dark matter
 - Fine-tuning of the Higgs boson mass
 - Strong CP problem
 - Neutrino masses
- We know that there is undiscovered physics out there
- ► New particles and interactions
- ▶ Why haven't we found them yet?
- ▶ Either large masses or small couplings


- New particles with small couplings require extremely high precision experiments, e.g.
 - ▶ Muon g-2
 - ► Mu2e
 - ► LZ, LDMX
 - ▶ DUNE, NOVA
- New particles with large masses require high energy colliders
 - LHC: highest energy collider in the world
 - At CERN, on Swiss-French border
 - Collides two beams of protons at a center of mass energy of 13.6 TeV
 - ▶ Began operations in 2009
 - Four experiments: ATLAS, ALICE, Compact Muon Solenoid (CMS), and LHCb

Search for new physics

LHC and CMS

- CMS is a general-purpose particle detector
- ► Total mass 14000 tonnes
- ► Position and momentum measured with tracking system, inside 3.8 T solenoid
- Energy measured with calorimeter (electromagnetic and hadronic)
- Muons identified by dedicated muon detectors, interspersed with magnet return yoke
- Sees 40 million events per second
 - Each event includes tens of proton-proton interactions
 - ► Trigger system picks out about 1000 "interesting" events per second



- So what do we do with this data?
- Both direct and indirect searches
- Direct searches look for new particles with mass less than the center-of-mass energy
 - Require detailed simulation of specific models computationally expensive
 - Could miss something if we don't try the right model
 - ▶ If you see something, gain detailed knowledge of the new physics
 - Like a magnifying glass, to examine things you can reach
- ▶ Indirect searches can stretch to higher masses
 - Generic description of new physics Effective Field Theory
 - Only gain generic knowledge from indirect observation
 - Like binoculars, to spot things you can't get to yet
- Crucial to do both!

- Effective Field Theory (EFT) is a model-independent approach to physics beyond the standard model
- \blacktriangleright Assume that new physics exists at some scale Λ beyond the current reach of experiments
- ► Enumerate all terms in the Lagrangian, ordered by their mass dimension
- Multiply terms up to some maximum mass dimension by Wilson coefficients
 - SM corresponds to all coefficients at zero
 - Small coefficients = small perturbation on SM = low-energy tail of new physics
- ▶ Perfect tool for indirect searches
- Just measure Wilson coefficients

The EFT Langrangian

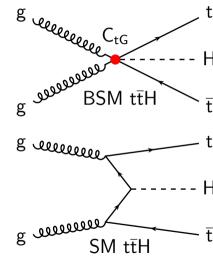
$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \sum_{d=5}^{\infty} \sum_{i} rac{1}{\Lambda^{d-4}} c_{i}^{(d)} \mathcal{O}_{i}^{(d)}$$

where d is the mass dimension, $c_i^{(d)}$ is a Wilson coefficient, and $\mathcal{O}_i^{(d)}$ is a dimension d operator

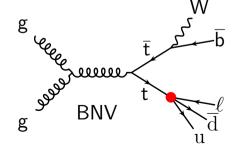
Effective Field Theory

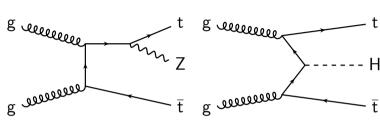
SMEFT

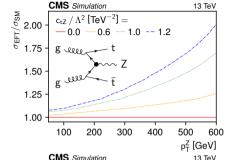
- ► Thia
 - ► This is the standard model EFT or "SMEFT"
 - Provides a common language across measurements, experiments
 - Facillitates comparison and combination of results
 - Some EFTs other than SMEFT also used in particle physics
 - Low energy effective field theory used in studies of bottom and charm quarks

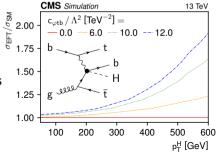

Historical / other EFTs include

- ► Fermi's theory of beta decay
- ▶ BCS theory of superconductivity
- many others, especially in condensed matter physics

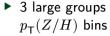

- Usually look at dimension 6 operators
 - ► SM already covers dim 2 and 4
 - Dim 5 only does neutrino mixing
 - ► The fun stuff starts at dim 6
 - ightharpoonup Higher dimensions more suppressed by Λ
- ▶ In total, SMEFT has 2499 dim 6 operators
- Driven by quark- and lepton-flavor combinatorics
- ightharpoonup Simple assumptions about flavor universality leave us with O(100) operators
- Most processes only affected by a few dozen at most

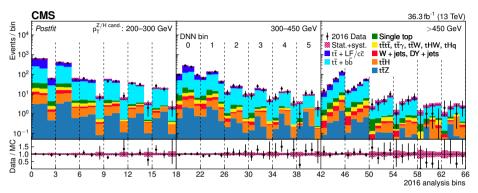




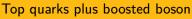

- Operators may alter rates/spectra for SM processes directly or via interference (diagrams on left)
- Or allow SM-forbidden processes (below)
- ► Make precision measurements and perform searches to constrain Wilson coefficients
- ► I'll give an overview of one precision measurement involving top quarks and a Higgs or Z boson

- ▶ Measure $t\bar{t}Z/t\bar{t}H$ when $p_{T}(Z/H)$ is large
- \blacktriangleright EFT effects more pronounced at high $p_{\rm T}(Z/H)$
- lacktriangle Select events with one charged lepton, missing p_{T} , and jets
- $\blacktriangleright \ \ \text{Measure 8 WCs:} \ \ c_{t\varphi}, \ c_{\varphi Q}^-, \ c_{\varphi Q}^3, \ c_{\varphi t}, \ c_{\varphi tb}, \ c_{tW}, \ c_{bW}, \ c_{tZ}$

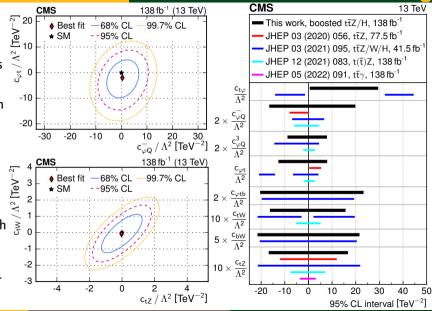



J.S. Wilson (BU) The future via the past

12 / 35



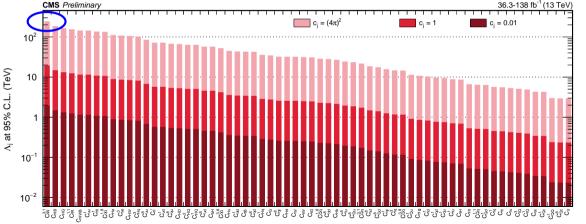
- 6 medium subgroups are NN bins
- Individual bins are ${\cal Z}/{\cal H}$ mass bins
- No significant deviation from SM expectation
- Use this to constrain WCs



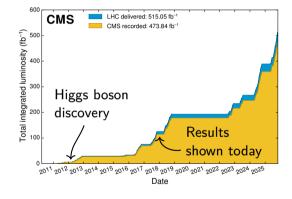
- ▶ $p_T(Z/H)$ provides EFT sensitivity
- ▶ Neural network (NN) trained to distinguish signals from backgrounds
- lacktriangle NN score and Z/H mass help control backgrounds
- lacktriangle Major backgrounds are $t\bar{t}+b\bar{b}$ and $t\bar{t}+{
 m jets}$

Phys. Rev. D 108 (2023) 032008

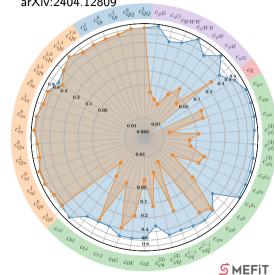
- ▶ Vary the $t\bar{t}Z/H$ signal and $t\bar{t}+b\bar{b}$ background as functions of the WCs
- Perform 1-D and 2-D likelihood scans for each WC and pair of WCs
- Consistent with SM (all WCs zero) at 95% CL
- Comparable sensitivity to other measurements
- ▶ Unique phase space with high-momentum Z/H makes this complementary to other measurements



- Statistical combinations of results are a central promise of EFT
- Work on combinations only just getting off the ground
 - First, combinations of top-related measurements, Higgs-related, etc.
 - ► Then move to CMS-global combination
 - Finally combine with other experiments
- ▶ Some pilot efforts in all three of these categories already exist
- ▶ First broad EFT combination from CMS involves 7 CMS measurements, plus electroweak precision observables from the Large Electron Positron collider [CMS-PAS-SMP-24-003]
 - One Higgs boson
 - ightharpoonup Three with W or Z bosons
 - Two with top quarks
 - ▶ One with generic jets
- ► Constrains 64 Wilson coefficients


- $lackbox{ We always set limits on } C/\Lambda^2$, not C
- \blacktriangleright Assume value of C , interpret as limits on new physics scale Λ
- ▶ Best case: for $C_{qq}^{1,3}=(4\pi)^2$, $\Lambda>$ 229 TeV
- $ightharpoonup \sim \! 17 imes$ the LHC center-of-mass energy
- ▶ Demonstrates reach of indirect searches

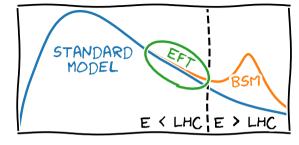
- Need more data—most EFT results today limited by data set size
- \blacktriangleright Already have $>3.5\times$ as much data
- ► Current run will go into July 2026
- ▶ Long shutdown to upgrade LHC, CMS
- ► Start High-Luminosity LHC June 2030
- ► HL-LHC to run through 2041
- ightharpoonup Will deliver ${\sim}10{\times}$ more data than before
- Plausible to push Λ sensitivity into PeV scale!

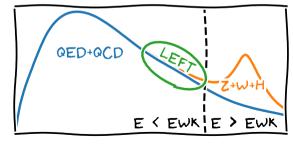


Looking to the future

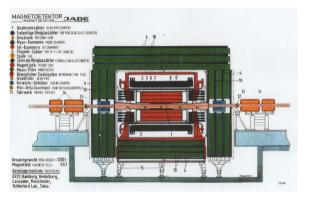
Future collider

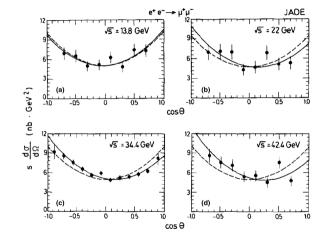
- ▶ FCC-ee: Future Circular Collider e^+e^- is a proposed collider, will run in a new 100 km tunnel at CERN
- ▶ Projected impact on Wilson coefficients (SMEFiT collaboration)
 - Outer edge shows current SMEFiT bounds
 - Closer to the center is stronger constraint
- ► HL-LHC: substantial improvement over now
- ► FCC-ee: massive improvement, except 4-quark operators
- ▶ Will be wonderful to exclude all this phase space for new physics
- But...we really want to discover something
- What would it look like to make a discovery via FFT?



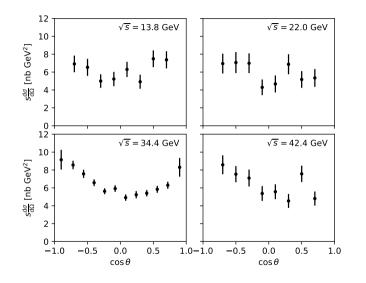

HL-LHC + FCC-ee

馰


- Effective Field Theory gives us a way to describe the effects of high-scale physics on low-scale experiments
- ► Can be hard to visualize generic BSM
- Let's treat part of the SM that we're very familiar with as "new" physics
- Look at data below electroweak scale look to the past to understand the future
- ► Integrate out W, Z, and Higgs bosons (and top quark)
 - ► Low-energy Effective Field Theory (LEFT) [JHEP 03 (2018) 016]


- ▶ JADE was an experiment at the PETRA e^+e^- collider at DESY
- Discovered the gluon by observing 3 jet events from e^+e^-
- ▶ 1979 1986
- ▶ Partly before UA1 and UA2 discovered W and Z
- ► Center of mass energies below electroweak scale: roughly 10 to 45 GeV

20 / 35

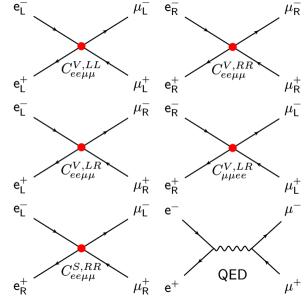


- ▶ JADE also measured $e^+e^- \to \mu^+\mu^-$
- ► Z.Phys.C 26 (1985) 507
- Muon asymmetry at 4 energies
- Dashed line QED, solid line EWK
- ► Let's apply LEFT to this data and see what we can learn
- ► An ahistorical case study
 - Pretend this is the only data we have:
 - ► No UA1/UA2
 - ▶ No neutrino data
 - ightharpoonup Don't even know G_F
 - What can LEFT tell us about physics beyond QED from JADE alone?

- ► First, we need to digitize the JADE data
- ► I used WebPlotDigitizer, but other plot digitizers would work
- Also need to understand binning and normalization
- At 13.8, 22, and 42.4 GeV, 8 bins span $|\cos \theta| < 0.8$: bin size 0.2
- ▶ At 34.4, ten bins span $|\cos\theta| < 0.8$: bin size 0.16, plus one bin at each end covering $0.8 < |\cos\theta| < 1.0$

22 / 35

- Plot contains $s\mathrm{d}\sigma/\mathrm{d}\Omega$, in nb GeV²
- Bin width divided out


J.S. Wilson (BU) The future via the past 12 Nov 2025

- Now we need to understand what LEFT predicts for this data
- Relevant operators (excluding CLFV, CPV, and dipole operators):

 - $C_{ee\mu\mu}^{V,RR} : (\bar{\psi}_{eR}\gamma_{\mu}\psi_{eR})(\bar{\psi}_{\mu R}\gamma^{\mu}\psi_{\mu R})$
- ► Four vector operators, one scalar
- ▶ Vector: like integrating out the *Z* boson
- Scalar: like integrating out the Higgs boson
- ► Also include QED!

▶ Pure QED prediction at tree level:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \frac{\pi\alpha^2}{2s} \left(1 + \cos^2\theta\right)$$

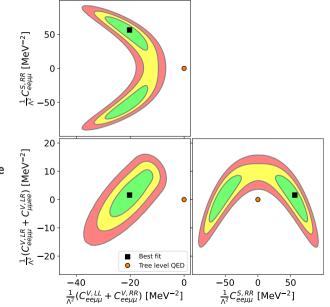
▶ Tree-level LEFT prediction, up to leading order in EFT:

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} &= \left[\frac{\alpha}{16}\frac{1}{\Lambda^2}\Re\left(C_{ee\mu\mu}^{V,LL} + C_{ee\mu\mu}^{V,RR} + C_{ee\mu\mu}^{V,LR} + C_{\mu\mu ee}^{V,LR}\right) + \frac{\pi\alpha^2}{2s}\right]\left(1 + \cos^2\theta\right) \\ &+ \left[\frac{\alpha}{16}\frac{1}{\Lambda^2}\Re\left(C_{ee\mu\mu}^{V,LL} + C_{ee\mu\mu}^{V,RR} - C_{ee\mu\mu}^{V,LR} - C_{\mu\mu ee}^{V,LR}\right)\right]2\cos\theta \\ &+ \frac{1}{128\pi}\frac{s}{\Lambda^4}\left|C_{ee\mu\mu}^{S,RR}\right|^2 \end{split}$$

- Now have components $1 + \cos^2 \theta$. $2 \cos \theta$, and flat
- Only sensitive to some linear combinations of Wilson coefficients:

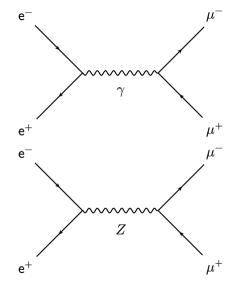
$$\Rightarrow \Re\left(C_{eeuu}^{V,LL} + C_{eeuu}^{V,RR}\right)/\Lambda^2 \Rightarrow \Re\left(C_{eeuu}^{V,LR} + C_{uuee}^{V,LR}\right)/\Lambda^2 \Rightarrow \left|C_{eeuu}^{S,RR}\right|^2/\Lambda^4$$

$$\triangleright \Re \left(C^{V,LR} + C^{V,LR} \right) / \Lambda^2$$


$$\triangleright \left| C_{eeuu}^{S,RR} \right|^2 / \Lambda^4$$

J.S. Wilson (BU)

The future via the past


- ► Flat priors for the WCs
- ▶ Integrate cross section in each bin
- Data Gaussian around cross section, width=data error bar
- ► Use MCMC (pymc5) to sample from posterior
- ► Plot 68.27, 95.45, and 99.73% credible regions
- Banana-shaped region in 3D
- ► Very far from QED-only prediction
- We have used EFT to discover "new" physics!

- Great, now what?
- EFT alone doesn't tell much detail about new physics
- Talk to model builders
- ► Take a specific model, compare to WCs
 - Don't need to re-analyze data to compare to other models
 - ► No model-specific Monte Carlo
- What do WCs tell about model parameters?
- ▶ Obvious model: electroweak theory
 - ▶ Two relevant parameters: M_W and M_Z
 - Equivalent: G_F and $\sin^2 \theta_W$
- ightharpoonup Two diagrams: γ and Z

27 / 35

12 Nov 2025

▶ Tree level prediction of the electroweak theory:

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2}{2s} \left(1 + \cos^2\theta \right) + \frac{G_F^2 M_Z^4}{\pi} \frac{s}{\left(s - M_Z^2 \right)^2 + M_Z^2 \Gamma_Z^2} \left[\left(g_V^2 + g_A^2 \right)^2 \left(1 + \cos^2\theta \right) + 8g_V^2 g_A^2 \cos\theta \right] + \sqrt{2}\alpha G_F M_Z^2 \frac{s - M_Z^2}{\left(s - M_Z^2 \right)^2 + M_Z^2 \Gamma_Z^2} \left[g_V^2 \left(1 + \cos^2\theta \right) + 2g_A^2 \cos\theta \right]$$

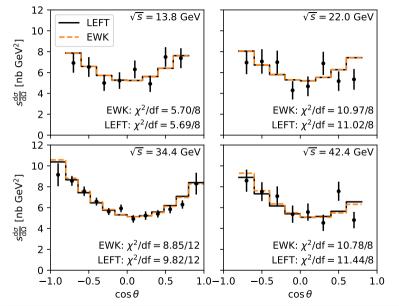
- $ightharpoonup G_F$: Fermi constant
- $ightharpoonup M_Z$: Z boson mass
- $ightharpoonup \Gamma_Z$: Z boson width
- $ightharpoonup \alpha$: Fine-structure constant
- lacktriangledown lacktriangledown vector coupling of muon/electron to Z, $-\frac{1}{4}+\sin^2\theta_W$
- $lackbox{ } g_A$: axial-vector coupling of muon/electron to Z, $-\frac{1}{4}$
- $ightharpoonup \sin^2 \theta_W$: Weinberg angle

J.S. Wilson (BU)

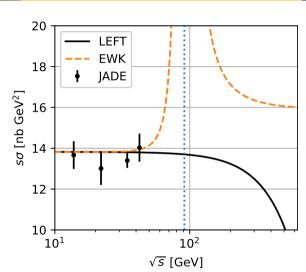
The future via the past

- ▶ If we compare the electroweak and LEFT cross sections, we can find electroweak predictions for the WCs
- ▶ LEFT cross section is already leading-order expansion in s/Λ^2 , so take leading-order expansion of electroweak cross section (i.e., just set $s \to 0$):

$$\Re \left(C_{ee\mu\mu}^{V,LL} + C_{ee\mu\mu}^{V,RR} \right) / \Lambda^2 = -8\sqrt{2}G_F \frac{M_Z^2}{M_Z^2 + \Gamma_Z^2} (g_V^2 + g_A^2) \tag{1}$$

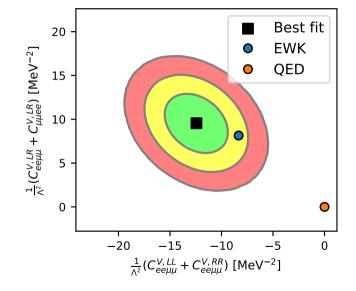

$$\Re \left(C_{ee\mu\mu}^{V,LR} + C_{\mu\mu ee}^{V,LR} \right) / \Lambda^2 = -8\sqrt{2}G_F \frac{M_Z^2}{M_Z^2 + \Gamma_Z^2} (g_V^2 - g_A^2) \tag{2}$$

$$C_{ee\mu\mu}^{S,RR} = 0 (3)$$

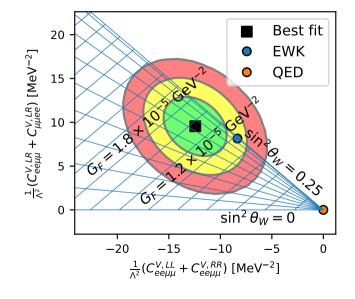

- We can let $\Gamma_Z \to 0$ to very good approximation
- ▶ Then these are just in terms of G_F and $\sin^2 \theta_W$ (via g_V)

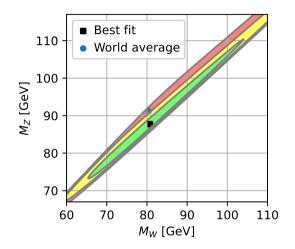
- Compare data to electroweak and LEFT predictions (WCs matched to EWK)
- Generally good description of data
- Electroweak and LEFT predictions very similar, not identical

Interpretation

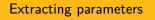


- Sum data over bins after correcting for bin width, then correct for fiducial region. to get total cross section
- ► Compare to electroweak prediction and to LEFT (matched WCs)
- ► For JADE energies, LEFT good approximation to electroweak
- ▶ Diverge rapidly closer to Z pole
- ▶ Above Z pole, LEFT will not converge, even with inclusion of arbitrarily high dimension operators

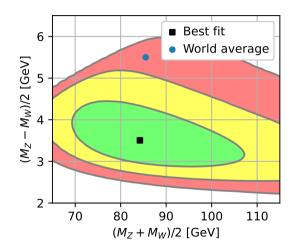



- What can we say about electroweak parameters from LEFT WCs?
- \blacktriangleright First, redo fit with $C_{ee\mu\mu}^{S,RR}=0$
 - ▶ Equivalent to taking slice through posterior at $C_{ee\mu\mu}^{S,RR}=0$
- Plot 2D posterior as function of remaining WCs
- ► QED-only still strongly excluded
- ► EWK expectation for WCs within 95.45% credible region

- ${\blacktriangleright}$ Overlay contours of constant G_F and $\sin^2\theta_W$
- $\begin{array}{c} \blacktriangleright \ \, G_F = 0 \ \, {\rm recovers} \, \, {\rm QED} \, \, \bigl(= {\rm infinite} \, \, \\ M_W, \, \, M_Z \bigr) \end{array}$
- $\blacktriangleright \ \sin^2\theta_W = 0$ is horizontal
- $\sin^2\theta_W=0.25$ is diagonal
- For larger $\sin^2\theta_W$, turns around and goes back down
 - $ightharpoonup \sin^2 heta_W = 0.5$ is horizontal
 - $ightharpoonup \sin^2 heta_W = 1$ opposite diagonal
 - Posterior is double covered
 - Upper right region impossible (at electroweak tree level)
- lacktriangle Calculate $M_{W,Z}$ from G_F , $\sin^2 \theta_W$
- ightharpoonup We can measure M_W and $M_Z!$



- For each posterior point in allowed region, compute G_F , $\sin^2\theta_W$ from WCs
 - Forbidden region removed, posterior rescaled to total probability of 1
 - $^{\blacktriangleright}$ For double-covered region, use $\sin^2\theta_W < 0.25$
- Then compute


$$\begin{split} M_W^2 &= \frac{\pi \alpha}{\sqrt{2} G_F \sin^2 \theta_W} \\ M_Z^2 &= \frac{\pi \alpha}{\sqrt{2} G_F \left(1 - \sin^2 \theta_W\right) \sin^2 \theta_W} \end{split}$$

- lacktriangle Plot posterior as function of M_W , M_Z
- ► Looks pretty decent!
- ► Let's look more closely

M_W and M_Z

- ▶ Plotting sum vs. diff makes it easier to see
- \blacktriangleright Real M_W , M_Z fall outside 95.45% region, inside 99.73% region
- ▶ Lots of room for improvement:
 - Calculations beyond LO
 - Radiative corrections to QED
 - lacktriangle Top-quark loop affects $M_W M_Z$
 - ightharpoonup Running couplings, esp. lpha
 - Better treatment of data uncertainties
- But still, remarkable that we could get W and Z boson masses from this data through the EFT lens!
- ▶ Would have been enough to guide construction of $Sp\bar{p}S$ or LEP, even without other electroweak constraints available at the time

12 Nov 2025

35 / 35

- $\,\blacktriangleright\,$ The point is not to measure the W and Z masses; we already know those
- ▶ The point *is* that EFT gave us a crude measurement of the "new particle" masses
- ▶ It's very hard to get funding to build a new, higher-energy collider
 - ▶ Especially when we don't even know whether there's anything for it to find
- \blacktriangleright But if we had something of this caliber, a $\sim 20\,\%$ measurement of new particle masses, the (funding) world would be very different

In fairness, none of that was my goal in starting this case study

- ▶ I wanted to develop intuition about the relationship between BSM physics and SMEFT operators
- ▶ Also to better understand how "matching" works
- ▶ But the end result was so much better than the starting plan
- ▶ If we find new physics via EFT, we will learn enough to guide the future of the field towards on-shell discovery
- ▶ "EFT at JADE: a case study", arXiv:2407.03468.

BACKUP

- ▶ Important note for correct normalization of cross sections: $d\Omega = d\varphi d\cos\theta$
- lacktriangle Because the cross sections do not depend on arphi, $rac{\mathrm{d}\sigma}{\mathrm{d}\cos heta}=\int_0^{2\pi}darphirac{\mathrm{d}\sigma}{\mathrm{d}\Omega}=2\pirac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$
- ► The JADE data plots show $\frac{d\sigma}{d\Omega}$, while the analytic tree level cross sections in the slides are given as $\frac{d\sigma}{d\cos\theta}$.
- \blacktriangleright Also, to recover physical units nb GeV² from natural units, one has to multiply by $(\hbar c)^2=3.893\,793\,72\times10^5\,\rm nb\,GeV^2$