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The Meissner Effect 

•  A diamagnetic 
property exhibited by 
superconductors. 

•  End result is the 
exclusion of magnetic 
field from the interior 
of a superconductor. 
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Materials 

•  YBCO == 123:     YBa2Cu3O7            94 K 

•  BSCO ==  2212:  Bi2Sr2CaCu2O8      91 K 

•  LSCO ==  214:     La2-xSrxCuO4         39 K 
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Materials 

•  YBCO == 123:     YBa2Cu3O7                
•  BSCO ==  2212:  Bi2Sr2CaCu2O8       
•  LSCO ==  214:     La2-xSrxCuO4            

•  TBACO up to 110 K 
•  HgBaCuO up to 134 K (153 K under pressure) 



UVa, April 2016 
 

Superconductivity timeline 
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What sort of materials are the cuprates? 

•  La2Cu04 is the 
“parent” material 

•  Would be half filled 
band metal 
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What sort of materials are the cuprates? 

•  La2Cu04 is the 
“parent” material 

•  Would be half filled 
band metal 

•  Layered, with square-
planar CuO2 sheets 

•  Actually a “charge-
transfer” insulator 
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Phase diagram 

•  Charge carriers are 
holes 

•  Adding holes (above 
~5% produces 
superconductivity 

•  “Optimal doping”  
     è max Tc 
     è linear resistivity 
    “strange metal” 
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Charge transport 

•  Cuprates: 
“metallic” dc 
resistance 

    
•    ρ = A+BTα 

     α ≈ 1; A ∼ 0. 
 
•   α = (T/ρ) · (dρ/dT) 
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Starting points 

1. Start with a charge transfer insulator 
§  CT gap: 1.5 eV 

2. Doping -> holes -> low-energy spectral weight 
3. It’s a superconductor 
§ Condensate => Has a δ (ω) contribution to σ1(ω) 

 
 
    with ρs the superfluid density 

§  London screening (Meissner effect) a 
consequence of the δ (ω) in σ1(ω) 
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Superfluid density 

•  Superfluid density, ρs(T): fundamental macroscopic 
quantity of a superconductor. 

•  Superconducting condensate signaled by spectral 
weight transfer to ω = 0 delta function. 

•  Superfluid density, ρs ↔ Strength of the delta 
function. (Obtained from sum rule [FGT].) 

•  Superfluid density, ρs ↔ Optical penetration depth. 
(ρs ∼ 1/λL

2) 

Recall that essentially every conduction electron 
participates in the T = 0 superfluid of a clean 
metallic superconductor.  (λL <-> c/ωp) 
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300 K reflectance of LaSrCuO 
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Kramers-Kronig of reflectance  

•  Relates real and imaginary parts of response 
functions 

•  Typical data: 30-40,000 cm-1 (4 meV-5 3V) 
•  Integral: zero to infinity 
•  ∴ extrapolations are needed, above and below 

measured data 
•  High end gives the most problems 
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Kramers-Kronig analysis of reflectance: Wooten (1972) 

•  How does it do?  
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KK with power law 
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X-ray optics 

•  Atomic scattering factors*  f 
•  The dielectric function is 

•  Sum: atoms j at number density nj and with complex 
scattering factor fj  

•  Limiting high-frequency behavior:  

•  Reflectance calculated as usual 

*See:  http://henke.lbl.gov/optical_constants/  
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LSCO:  some vuv data do exist 

•  How does it do?  
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IR and CT band independent of bridge 
Smll variations above 16,000  cm-1 (2 eV) 

•  So far so good.  http://www.phys.ufl.edu/~tanner/ZIPS/datan.zip 
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La2-xSrxCuO4 ab-plane optical conductivity 
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Bisco 2212 ab-plane optical conductivity 
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A set of underdoped crystals 

•  Area under curves 
decreases as 
doping is reduced 

•  Area smaller below 
Tc 
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Partial sum rule 

•  Low-energy carrier density and superfluid density: 
    Partial sum rule 

          ρeff (ω) ≡  

•  e (m) free-electron charge (mass), m∗ the effective 
mass, and VCu the volume allocated to each CuO2 
unit and associated atoms.  (Vcell / Z*NCu) 

    Goal: Compare ρeff with ρs for a variety of samples 
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Two things: 

And 
 
 
as ω → ωCT 
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ρeff 



UVa, April 2016 
 

is linear in Tc 
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ρs 
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is linear in Tc 
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Different ρ scales (1:5) 



UVa, April 2016 
 

Superfluid density is small part of total 

•  ρs increases with Tc. (Uemura plot) 
•  ρeff increases with Tc. (doping) 
•  ρs/ρeff  ≈ 0.2 
•  In one component picture, the midinfrared 

absorption is a Holstein sideband, giving 

•  (λ = mass enhancement factor) 

             ⇒ λ = 4 ! 
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As a check, use the relation of σ 2 to ns 

•  Start with Kramers-Kronig for sigma1 – epsilon1 

•  Do the integral 

•  Convert to σ2 = ω (1-ε1)/4π

•  As before 
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Compare two quantities: 

                                                                    (Sum Rule) 
 
•  which should saturate at high frequencies, and 

                                                                    (London) 

•  which should be constant at low frequencies. 

•  And, which should represent the “true” weight of 
the delta function. 
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Superfluid weight comes from low energies 
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Charge transport 

•  Cuprates: 
“metallic” dc 
resistance 

    
•    ρ = A+BTα 

     α ≈ 1; A ∼ 0. 
 
•   α = (T/ρ) · (dρ/dT) 
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Charge transport 

•  ρ ∼ 150–300 µΩ-cm at 300 K 
•  Natural to think of a Drude model 
•  Inadequate once midinfrared absorption kicks in 
•  Restricts your view to frequencies below about 8 THz (250 cm

−1; 30 meV): 

•  Then,  ab-plane conductivity is described well by a Drude 
model. 

•  The idea of simple free carriers was discarded out long ago.  
•  Should it be reconsidered in light of experiments showing 

Fermi Surface reconstruction? 
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Fermi surface 

•  Energy dispersion 

•  Max è Fermi energy 
•  Fermi surface is a 

circle in 2D 
•  Displaced when 

current flows 
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Fermi surface reconstruction 

•  This is what I thought the Fermi surface looked like 
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Fermi surface reconstruction 

•  Or maybe this  (ARPES results for BiSrCaCuO) 
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Fermi surface reconstruction 

•  Or maybe this  (ARPES results for BiSrCaCuO) 
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Fermi surface reconstruction 

•  Add new zone boundary 
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Fermi surface reconstruction 

•  Much smaller area; hole and electron pockets 
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Fermi surface reconstruction 

•  Evidence: Shubnikov–de Haas oscillations  
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Drude conductivity 

•     - mean free time between collisions. 
•                            - plasma frequency 
   or oscillator strength or spectral weight 
•  Real part, σ1D(ω), satisfies sum rule, 

•  Expect n constant,     varies with condition 
      (purity, temperature ….) 
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σ1(ω) and σ2(ω) from the Drude model 
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BSCO 2212 conductivity 
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Looks like Drude model 
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BSCO 2212 conductivity 
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Temperature dependence of        and ωp    

•        :  linear in T 

•  Generally   

•  λ = 0.37 
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   is linear in T, with λ = 0.35 ± 0.04 
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Most of the Drude weight joins the superfluid 
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Conclusions 

•  Only about 20% of doping-induced spectral 
weight condenses into the superfluid 

•  Almost all the Drude contribution (assuming the 
description is correct) condenses 
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The end 
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Kramers-Kronig analysis of reflectance: 
High-frequency extensions matter 


