

What is the temperature of an ultra-cold Rydberg plasma?

Duncan Tate*

Department of Physics and Astronomy, Colby College, Waterville, ME 04901

* In collaboration with Gabe Forest, Yin Li, Edwin Ward, and Anne Goodsell

Overview

Ultra-cold (neutral) plasmas (UNPs)

- What is an ultra-cold neutral plasma?
- How do you make a UNP?
- What is an ultra-cold Rydberg plasma?
- Our experiment
- UNP diagnostics
- Recent results what is the electron temperature?
- Conclusion

What have we done?

Experiment:

Cold Rydberg atoms \rightarrow UNP

- 1. Look at time-of-flight spectra of Rb⁺ ions as a diagnostic for plasma asymptotic expansion velocity, v_0 .
- 2. How is the "effective electron temperature",

$$T_{e,0} = \frac{m_i v_0^2}{k_B}$$

affected by the initial Rydberg binding energy, E_b , and the Rydberg atom density?

What makes a plasma a plasma?

T.C. Killian et al. / Physics Reports 449 (2007) 77-130

$$\lambda_D = \sqrt{\frac{\epsilon_0 k_B T_e}{e^2 n_e}}$$

$$\ll \text{plasma size, } \sigma$$

$$\left(\frac{4}{3}\pi\lambda_D^3\right)n_e \ge 1$$

Coulomb coupling parameter:

$$\Gamma_e = \frac{e^2}{4\pi\epsilon_0 a k_B T_e}$$

- Most plasmas are hot!
 - Electron collisions need to be able to ionize atoms to replenish electrons lost by recombination
- Atomic physics affects plasma dynamics
- Cold plasmas a route to the "strongly coupled regime"? $(\Gamma > 1)$

(September 2015)

Inside MOT vacuum chamber

Observe electrons (or ions) that "leak" out of UNP made from cold **Rb** atoms using a micro-channel plate (MCP)

(Rb+ has no transitions that are suitable for laser Doppler velocimetry.)

Making a UNP

(Rb; "Laser 1" only)

Laser 1 excess photon energy all goes to electron

$$\Sigma E_{e,0} \equiv \frac{3}{2} k_B \underline{T_{e,0}} = h\nu - E_{IP}$$

$$\Gamma_e = \frac{e^2}{4\pi e^2 - k_B T_{e,0}}$$

$$T_{e,0} = 0.1 - 1000 \text{ K}$$

Creation of an Ultracold Neutral Plasma

Xe $6s[3/2]_2$ $\tau = 43 s$ $\lambda = 882 nm$

T.C. Killian, S. Kulin, S.D. Bergeson,* L.A. Orozco,† C. Orzel, and S.L. Rolston National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8424 (Received 30 July 1999)

Experiment: Kulin et al., PRL, **85**, 318 (2000) Theory: Robicheaux and Hansen, PRL, **88**, 055002 (2002)

Problems in reaching the Strongly-coupled regime

TBR heating (+ DIH, CL)

Rate
$$\propto T^{-9/2}$$

Rydberg atoms

Large size, electron weakly bound – "planetary atoms" Properties depend on n (or n^*) in a regular manner

What is a
Rydberg plasma?
(and, how do you
make one?)
(Laser 2 only)

"Avalanche"

Somehow, cold, dense samples of Rydberg atoms spontaneously evolve to plasma!
(Discovered at UVA)

(Robinson et al, Phys. Rev. Lett., 85, 4466, 2000)

How does this happen?

Seeding mechanism:

Dipole-dipole forces – attractive and repulsive interatomic energy curves (e.g. Cabral et al., New J. Phys., **12**, 093023, 2010)

Penning ionization due to attractive potentials (e.g., Robicheaux, J. Phys. B, **38**, S333, 2005)

Or:

Photoionization by black body radiation (BBR)

Hot-cold Rydberg collisions

Li et al., Phys. Rev. A, **70**, 042713 (2004)

Then: avalanche regime

- Electron-Rydberg collisions ionize up to approximately 75% of Rydberg atoms
- Remaining Rydberg atoms are scattered to lower energy states
- When does avalanche regime end, and what determines the plasma electron temperature?

Experiment – finding v₀ from Rb⁺ ion TOF signal

Kevin Twedt, PhD thesis, University of Maryland, 2012

Selected results

Idea: use scaled quantities:

$$E_b = \frac{1}{2} \frac{e^2}{4\pi\epsilon_0 a_0} \frac{1}{n^{*2}}$$

$$\tilde{T} = \frac{k_B T_e}{E_b} \qquad \tilde{a}_e = \frac{a_e}{2n^{*2} a_0}$$

$$\Gamma_e = \frac{e^2}{4\pi\epsilon_0 a_e k_B T_e} = \frac{1}{\tilde{a}_e \tilde{T}}$$

But: we can't measure a_e , just a_R (f = ionization fraction)

$$\tilde{a}_e = \frac{\tilde{a}_R}{f^{1/3}}$$

Data fall on a universal curve!

Analysis - what do the data mean?

Simulated expansion of an ultra-cold, neutral plasma

F. Robicheaux^{a)} and James D. Hanson Department of Physics, Auburn University, Alabama 36849-5311

Physics of Plasmas, 10, 2217 (2003)

$$n_i(r,t) = N_i [\beta(t)/\pi]^{3/2} \exp[-\beta(t)r^2]$$

$$\frac{d\gamma}{dt} + \gamma^2 = 2k_b T_e(t) \beta(t) / M_i,$$

$$v_i(r,t) = r \gamma(t)$$

$$\beta(t) = \beta(0) \exp \left[-2 \int_0^t \gamma(\overline{t}) d\overline{t} \right],$$

$$\begin{split} \frac{d\gamma}{dt} + \gamma^2 &= 2k_b T_e(t)\beta(t)/M_i\,, \\ \beta(t) &= \beta(0) \exp\left[-2\int_0^t \gamma(\overline{t})d\overline{t}\right], \\ \frac{3}{2}k_{\rm B}T_e(0) &= \frac{3}{2}k_{\rm B}T_e(t) + \frac{3}{4}M_i\frac{\gamma^2(t)}{\beta(t)} + E_{\rm Ryd}\,, \end{split}$$

f = Probability of excitation

$$f = \frac{1}{1 + \frac{|E_R|}{3.83k_B T_e}}$$

$$A_d = n_e(r) 7.2 \left(\frac{27.2 \text{ eV}}{k_b T_e} \right)^{0.17} v^{2.66} a_0^2 \alpha c$$

$$A_e = n_e(r) 55 \left(\frac{k_b T_e}{27.2 \text{ eV}} \right)^{0.83} v^{4.66} a_0^2 \alpha c$$

$$\Delta E_{\mathbf{R}} = E_{\mathbf{R}} \cdot \left(\left[\frac{1 - f}{1 - y} \right]^{0.2611} - 1 \right)$$

$$= -k_{\rm B}T_{\rm e} \ln \left(\frac{y}{f}\right)$$

Now: f_i = initial ionization fraction

Intuition – what do the simulation results mean? Effect of Rydberg atoms on electron temperature

Cold dipole collisions (Robicheaux, J. Phys. B, 38, S333, 2005)

What can we predict?

Final ionization fraction, f_f

 f_f = final ionization fraction (at 40 μ s evolution time)

Heuristic:

 $f_i = 10^{-1}$

$$\beta \equiv \frac{\bar{E}_{b,f}}{k_B T_{e,0}} = 1.55 \, e^{2.19 \, f_f}$$

 $f_i = 10^{-2}$

 $f_f = 0.84$

(a)

Energy conservation:

$$-(1-f_i) N E_{b,i} + f_i N \frac{3}{2} k_B T_{e,i}$$

$$= -(1 - f_f) N \bar{E}_{b,f} + f_f N \frac{3}{2} k_B T_{e,f}$$

$$\tilde{T} = \frac{k_B T_{e,f}}{E_{b,i}} = \frac{k_B T_{e,0}}{E_{b,i}} \approx \frac{1}{((1 - f_f)\beta - \frac{3}{2}f_f)}$$

Initial UNP electrons too cold to ionize Rydberg atoms – main interaction is Rydberg deexcitation: $\Lambda E = \hat{E} + \hat{E} +$

$$\Delta E_R \propto -|E_R| \Rightarrow \tilde{T} \propto E_{b,i}$$

Conclusions

- Plasma electron temperature is determined by decoupling point between UNP and Rydberg atoms. This happens when electrons cool (as plasma adiabatically expands) so much that they cannot ionize Rydberg atoms
- For n > 40, electron temperature depends on final ionization fraction, f_f
- For n < 30, ionization fraction is small. Initial seed electrons have too low an energy to ionize Rydberg atoms. Electrons heat by an amount proportional to E_b due to collisions which de-excite Rydbergs.
- An earlier version of this work is available at https://arxiv.org/abs/1702.01463
- Will be resubmited for publication (soon!)

Acknowledgements:

- •Gabriel Forest, `18
- •Yin Li, `19
- •Edwin Ward, `16
- •Anne Goodsell, Middlebury College
- •Tom Gallagher, UVA
- •Francis Robicheaux, Purdue
- Charlie Conover, Colby College

Funding:

- National Science Foundation
- Colby College
- Middlebury College

