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Interesting functions result from coordinated activity among
large numbers of neurons

Th ese b e h aviors are N:lllllxl;fﬂtgflto\;(:l'l;sb ?lrllt(lieghyswal systems with emergent collective
(c 5y (associative memory/parallekprocessing/ categorization/content-addressable memory/fail-soft devices)
e m e rg e nt J. ]. HOPFIELD

Emergent phenomena are all around us, even In equilibrium systems.
These phenomena are captured in the language of statistical mechanics.

The first step of equilibrium statistical mechanics is to write the probability
distribution over “microscopic” states of the system.

Often we use models which are much simpler than the microscopic reality.

Thanks to the renormalization group, we understand why this works.



Can we write down the (joint!)
probability distribution for the activity
of many neurons in a network?

(for simplicity, let’s focus on one moment in time)

Is there any reason to think that this
distribution is simpler than it could be?

N
N neurons = 27" states In principle, every state has a
N=10 2" ~ 1000 different probability, and there
N=20 2V ~10° doesn’t need to be any pattern.

N =100 2% ~ 1039 If that’s true, we’re sunk.



This problem is different because now we can
observe the activity of many neuro ultaneously.
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Using arrays of electrodes to record from 100+ neurons In the retina.

R Segev, J Goodhouse, JL Puchalla, and MJ Berry Il, Nat Neurosci 7:1155 (2004).
O Marre, D Amodei, N Deshmukh, K Sadeghu, F Soo, TE Holy, and MJ Berry Il J Neurosci 32:14859 (2012).
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Combining genetic engineering, two-photon microscopy, and virtual reality to
record from 1000+ neurons in the hippocampus.

DA Dombeck, CD Harvey, L Tian, LL Looger, and DW Tank, Nat Neurosci 13:1433 (2010).
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Optical recording from hippocampal neurons as a
mouse moves in a virtual environment

Denoising + discretization
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L Meshulam, JL Gauthier, CD Brody, DW Tank, and WB, Neuron 96:1 (2017).



What features of the data do we want to capture?

Mean activity of individual neurons
Correlations between pairs of neurons

(05)model = ) _ P ({01}) 05 = (07) data
{oi}

(00K model = » P ({01}) 0j0x = (0j0%) data
{oi}

Infinitely many models are consistent with these constraints
Choose the one with the least structure - maximum entropy

P({O’l}) — %exp |:Z hio; - ; ZJijO'iO-j‘|
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Since we used the pair correlations to build the
model, can we predict correlations among triplets?
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Are correlations inherited
from place fields?



If activity really is collective, we can predict the
probability of one cell being active from the state
of all the other cells Iin the network.
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Let’s “unfold” this
relationship over time ... 0
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predicted probability
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Can we write down the (joint!)
probability distribution for the activity
of many neurons in a network?

Yes. In fact, with ~100 neurons, we can
construct models that are surprisingly precise.

Is there any reason to think that this
distribution is simpler than it could be?

(a brief reminder about the RG)

S Bradde & WB, J Stat Phys 167:462 (2017).
L Mehsulam, JL Gauhtier, CD Brody, DW Tank, and WB (almost done).



“coarse-graining”
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Correlations inside the clusters

Cij = (oioj) — (01){0}) Find the eigenvalues in clusters of
o0 different sizes
5 (be careful about sampling problems!)
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Probability that the entire cluster is silent

free energy

= P({oi=0}) = 5 ="

So we can estimate the
“free energy” as a function

of cluster size 40t
10° 10"
cluster size
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Distribution of nonzero activity

Distribution approaches a
fixed form at large scales.

This Is also visible in raw
fluorescence data.
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Larger clusters have slower dynamics ...
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but these dynamics scale t, ~ NO-21£0.04
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What have we learned?

Coarse-graining the patterns of neural activity
leads to simpler, but not trivial, descriptions.

Many characteristics “scale” as a power-law In the
number of neurons that we group together.

These results suggest that patterns of neural
activity have a surprising self-similarity.

This is not what we expect from “typical” networks.



Path to a fuller theory? Can we find a model that does
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