
The physics of life

How much can 
we calculate?



What do theoretical physicists do?
“La filosofia è scritta in questo grandissimo 

libro che continuamente ci sta aperto innanzi 
a gli occhi (io dico l'universo), ma non si può 
intendere se prima non s'impara a intender 
la lingua, e conoscer i caratteri, né quali è 

scritto. Egli è scritto in lingua matematica, e i 
caratteri sono triangoli, cerchi, ed altre figure 

geometriche, senza i quali mezi è 
impossibile a intenderne umanamente 

parola; senza questi è un aggirarsi 
vanamente per un'oscuro laberinto.”

The book of Nature is written in the language 
of mathematics.            (Galileo Galilei, 1623)



This is not a universally held view of the world.

(see also Mayr on biology vs. astronomy!)



Why should we believe in (relatively) simple,
universal mathematical descriptions?

http://www.efluids.com

http://www.treehugger.com


http://www.vintechnology.com

http://earthobservatory.nasa.gov
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A QUANTITATIVE DESCRIPTION OF MEMBRANE
CURRENT AND ITS APPLICATION TO CONDUCTION

AND EXCITATION IN NERVE

BY A. L. HODGKIN AND A. F. HUXLEY
From the Physiological Laboratory, University of Cambridge

(Received 10 March 1952)

This article concludes a series of papers concerned with the flow of electric
current through the surface membrane of a giant nerve fibre (Hodgkin,
Huxley & Katz, 1952; Hodgkin & Huxley, 1952 a-c). Its general object is to
discu the results of the preceding papers (Part I), to put them into
mathematical form (Part II) and to show that they will account for con-
duction and excitation in quantitative terms (Part III).

PART I. DISCUSSION OF EXPERIMENTAL RESULTS
The results described in the preceding papers suggest that the electrical
behaviour of the membrane may be represented by the network shown in
Fig. 1. Current can be carried through the membrane either by charging the
membrane capacity or by movement of ion-s through the resistances in parallel
with the capacity. The ionic current is divided into components carried by
sodium and potassium ions (INa and IK), and a small 'leakage current' (I,)
made up by chloride and other ions. Each component of the ionic current is
determined by a driving force which may conveniently be measured as an
electrical potential difference and a permeability coefficient which has the
dimensions of a conductance. Thus the sodium current (INa) is equal to the
sodium conductance (9Na) multiplied by the difference between the membrane
potential (E) and the equilibrium potential for the sodium ion (ENa). Similar
equations apply to 'K and I, and are collected on p. 505.
Our experiments suggest that gNa and 9E are functions of time and

membrane potential, but that ENa, EK, El, CM and g, may be taken as
constant. The influence of membrane potential on permeability can be sum-
marized by stating: first, that depolarization causes a transient increase in
sodium conductance and a slower but maintained increase in potassium con-
ductance; secondly, that these changes are graded and that they can be
reversed by repolarizing the membrane. In order to decide whether these
effects are sufficient to account for complicated phenomena such as the action
potential and refractory period, it is necessary to obtain expressions relating
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A theory of superconductivity is presented, based on the fact
that the interaction between electrons resulting from virtual
exchange of phonons is attractive when the energy difference
between the electrons states involved is less than the phonon
energy, Ace. It is favorable to form a superconducting phase when
this attractive interaction dominates the repulsive screened
Coulomb interaction. The normal phase is described by the Bloch
individual-particle model. The ground state of a superconductor,
formed from a linear combination of normal state configurations
in which electrons are virtually excited in pairs of opposite spin
and momentum, is lower in energy than the normal state by
amount proportional to an average (Ace)', consistent with the
isotope effect. A mutually orthogonal set of excited states in

one-to-one correspondence with those of the normal phase is
obtained by specifying occupation of certain Bloch states and by
using the rest to form a linear combination of virtual pair con-
figurations. The theory yields a second-order phase transition and
a Meissner effect in the form suggested by Pippard. Calculated
values of specihc heats and penetration depths and their temper-
ature variation are in good agreement with experiment. There is
an energy gap for individual-particle excitations which decreases
from about 3.5kT, at T=O'K to zero at T,. Tables of matrix
elements of single-particle operators between the excited-state
superconducting wave functions, useful for perturbation expan-
sions and calculations of transition probabilities, are given.

I. INTRODUCTION
'HE main facts which a theory of superconductivity
must explain are (1) a second-order phase

transition at the critical temperature, T„(2) an elec-
tronic specific heat varying as exp(—Ts/T) near
T=O'K and other evidence for an energy gap for
individual particle-like excitations, (3) the Meissner-
Ochsenfeld effect (B=O), (4) effects associated with
infinite conductivity (E=O), and (5) the dependence
of T, on isotopic mass, T,QM=const. We present
here a theory which accounts for all of these, and in
addition gives good quantitative agreement for specific
heats and penetration depths and their variation with
temperature when evaluated from experimentally
determined parameters of the theory.
When superconductivity was discovered by Onnes'

(1911),and for many years afterwards, it was thought
to consist simply of a vanishing of all electrical re-
sistance below the transition temperature. A major
advance was the discovery of the Meissner eGect'
(1933),which showed that a superconductor is a perfect
diamagnet; magnetic Aux is excluded from all but a
thin penetration region near the surface. Not very long
afterwards (1935), London and London' proposed a
phenomenological theory of the electromagnetic prop-
erties in which the diamagnetic aspects were assumed

*This work was supported in part by the Once of Ordnance
Research, U. S. Army. One of the authors (J. R. Schrieffer) was
aided by a Fellowship from the Corning Glass Works Foundation.
Parts of the paper are based on a thesis submitted by Dr. Schrieffer
in partial fulfillment of the requirements for a Ph.D. degree in
Physics, University of Illinois, 1957.
f Present address: Department of Physics and Astronomy, The

Ohio State University, Columbus, Ohio.
[Present address: Department oi Theoretical Physics, Uni-

versity of Birmingham, Birmingham, England.
'H. K. Onnes, Comm. Phys. Lab. Univ. Leiden, Ãos. 119,

120, 122 (1911).' W. Meissner and R. Ochsenfeld, Naturwiss. 21, 787 (1933).'H. London and F. London, Proc. Roy. Soc. (London) A149,
71 (1935);Physica 2, 341 (1935}.

basic. F. London4 suggested a quantum-theoretic
approach to a theory in which it was assumed that
there is somehow a coherence or rigidity in the super-
conducting state such that the wave functions are not
modified very much when a magnetic Geld is applied.
The concept of coherence has been emphasized by
Pippard, ' who, on the basis of experiments on pene-
tration phenomena, proposed a nonlocal modification
of the London equations in which a coherence distance,
gs, is introduced. One of the authors' r pointed out that
an energy-gap model would most likely lead to the
Pippard version, and we have found this to be true of
the present theory. . Our theory of the diamagnetic
aspects thus follows along the general lines suggested
by London and by Pippard. 7
The Sommerfeld-Bloch individual-particle model

(1928) gives a fairly good description of normal metals,
but fails to account for superconductivity. In this
theory, it is assumed that in first approximation one
may neglect correlations between the positions of the
electrons and assume that each electron moves inde-
pendently in some sort of self-consistent field deter-
mined by the other conduction electrons and the ions.
Wave functions of the metal as a whole are designated
by occupation of Bloch individual-particle states of
energy e(k) defined by wave vector k and spin o", in
the ground state all levels with energies below the
Fermi energy, 8&, are occupied; those above are
unoccupied. Left out of the Bloch model are correlations
between electrons brought about by Coulomb forces
and interactions between electrons and lattice vibrations
(or phonons).

4 F. London, Proc. Roy. Soc. (London) A152, 24 (1935);
Phys. Rev. 74, 562 (1948).' A. B.Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).

6 J. Bardeen, Phys. Rev. 97, 1724 (1955).
7 For a recent review of the theory of superconductivity, which

includes a discussion of the diamagnetic properties, see J.Bardeen,
Eecyclopedia of Physics (Springer-Verlag, Berlin, 1956), Vol. 15,
p. 274.
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movement of a negatively charged particle which blocks the flow of sodium
ions when it reaches the inside of the membrane. This is encouraging, but it
must be mentioned that a physical theory of this kind does not lead to
satisfactory functions for och and h without further ad hoc assumptions.
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Fig. 10. Steady state relation between h and V. The smooth curve is drawn according to eqn. (25).
The experimental points are those given in Table 1 of Hodgkin & Huxley (1952c). Axon 38(50 C) as measured. Axon 39 (190 C) displaced - 1-5 mV. Axon 39* (30 C, fibre in derelict
state) displaced - 12 mV. The curve gives the fraction of the sodium-carrying system which
is readily available, as a function of membrane potential, in the steady state.

PART III. RECONSTRUCTION OF NERVE BEHAVIOUR
The remainder of this paper will be devoted to calculations of the electrical
behaviour of a model nerve whose properties are defined by the equations
which were fitted in Part II to the voltage clamp records described in the
earlier papers of this series.

Summary of equations and parameters
We may first collect the equations which give the total membrane current I

as a function of time and voltage. These are:
dV

I=CMdt +#Kn (V-VK) +9Nam3h (V-VNa) + 91 (VV-) (26)
where dnl/dt =ocn(l-n)-Pn, (7)

dm/dt= m(1-m)-P.m, (15)
clh/clt = oc,(l1-h)-# h) ( 16)
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and yn=001 (V+10)/(exp 1O -1), (12)

/n3=0.125 exp (V/80), (13)

om=O-l (V+25)/(exp VZ2 -1), (20)

f3m=4 exp (V/18), (21)
Xh= 007 exp (V120), (23)
h=1/(exp V+30 +1). (24)

Equation (26) is derived simply from eqns. (1)-(6) and (14) in Part II. The
four terms on the right-hand side give respectively the capacity current, the
current carried by K ions, the current carried by Na ions and the leak current,
for 1 cm2 of membrane. These four components are in parallel and add up to
give the total current density through the membrane I. The conductances to
K and Na are given by the constants gK and 9NaX together with the dimension-
less quantities n, m and h, whose variation with time after a change of
membrane potential is determined by the three subsidiary equations (7), (15)
and (16). The a's and ,B's in these equations depend only on the instantaneous
value of the membrane potential, and are given by the remaining six equations.

Potentials are given in mV, current density in IzA/cm2, conductances in
m.mho/cm2, capacity in juF/cm2, and time in msec. The expressions for the
cc's and P's are appropriate to a temperature of 6.30 C; for other temperatures
they must be scaled with a Qlo of 3.
The constants in eqn. (26) are taken as independent of temperature. The

values chosen are given in Table 3, column 2, and may be compared with the
experimental values in columns 3 and 4.

Membrane currents during a voltage clamp
Before applying eqn. (26) to the action potential it is well to check that it

predicts correctly the total current during a voltage clamp. At constant
voltage dV/dt=0 and the coefficients a and ,B are constant. The solution is
then obtained directly in terms of the expressions already given for n, m and h
(eqns. (8), (17) and (18)). The total ionic current was computed from these for
a number of different voltages and is compared with a series of experimental
curves in Fig. 11. The only important difference is that the theoretical current
has too little delay at the sodium potential; this reflects the inability of our
equations to account fully for the delay in the rise of g9 (p. 509).

'Membrane' and propagated action potentials
By a 'membrane' action potential is meant one in which the membrane

potential is uniform, at each instant, over the whole of the length of fibre
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considered. There is no current along the axis cylinder and the net membrane
current must therefore always be zero, except during the stimulus. If the
stimulus is a short shock at t = 0, the form of the action potential should be
given by solving eqn. (26) with I = 0 and the initial conditions that V= Vo and
m, n and h have their resting steady state values, when t =0.
The situation is more complicated in a propagated action potential. The fact

that the local circuit currents have to be provided by the net membrane
current leads to the well-known relation

1 a2V
ax2' (27)

where i is the membrane current per unit length, r1 and r2 are the external and
internal resistances per unit length, and x is distance along the fibre. For an
axon surrounded by a large volume of conducting fluid, r, i8 negligible com-
pared with r2. Hence 1 a V

r2 ax2
or

a

=2R Va (28)

where I is the membrane current density, a is the radius of the fibre and R2 is
the specific resistance of the axoplasm. Inserting this relation in eqn. (26),
we have

a a2V av 4V-2R2 ax2 =CMat+SEn4 (V-VK) +gNam3h(V-VNa) + gl (V-VI), (29)

the subsidiary equations being unchanged.
Equation (29) is a partial differential equation, and it is not practicable to

solve it as it stands. During steady propagation, however, the curve of V
against time at any one position is similar in shape to that of V against distance
at any one time, and it follows that

a2v 1 a2v
ax2= 2 at2)

where 0 is the velocity of conduction. Hence
a d2V dV

2R202 dt2 CM dt +Kn4 (V-VK)+gNm3kh(V-VNa)+g9(V-V). (30)
This is an ordinary differential equation and can be solved numerically, but

the procedure is still complicated by the fact that 0 is not known in advance.
It is necessary to guess a value of 0, insert it in eqn. (30) and carry out the
numerical solution starting from the resting state at the foot of the action
potential. It is then found that V goes off towards either + oo or -oo,
according as the guessed 0 was too small or too large. A new value of 0 is
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VI. CONCLUSION

Although our calculations are based on a rather
idealized model, they give a reasonably good account
of the equilibrium properties of superconductors. VVhen
the parameters of the theory are determined empirically,
we find that we get agreement with observed speci6c
heats and penetration depths to within the order of
10%%u~. Only the critical temperature involves the super-
conducting phase; the other two parameters required
(density of states and average velocity at the Fermi
surface) are determined from the normal phase. This
quantitative agreement, as well as the fact that we can
account for the main features of superconductivity is
convincing evidence that our model is essentially
correct.
The basis for the theory is a net attractive interaction

between electrons for transitions in which the energy
diBerence between the electron states involved is less
than the phonon energy, A&. For simplicity we have
assumed a constant matrix element, —V, for transitions
within an average energy Ace of the Fermi surface and
have neglected the repulsive interaction outside this
region. In more accurate calculations one should take
an interaction region dependent on the initial states of
the electron and the transition involved, and also take
into account any anisotropy in the Fermi surface and
in the matrix elements. The fact that there is a law of
corresponding states is empirical evidence that such
eGects are not of great importance. Neglect of the
repulsive part of the interaction is in the spirit of the
Bloch approximation for normal metals, and appears to
be well justi6ed in erst approximation. Our theory may
be regarded as an extension of the Bloch theory to
superconductors in which we introduce only those
interactions responsible for the transition.
An improvement in the general formulation of the

theory is desirable. We have used that of Bardeen and
Pines in which screening of the Coulomb field is taken
into account by the Bohm-Pines collective model, and
the phonon interaction between electrons is determined
only to second order. Diagonal or self-energy terms in
the net interaction have been omitted with the assump-
tion that they are included in the Bloch energies of the
normal state. When the phonon interaction is so large
as to give superconductivity, higher order terms than
the second may well be important. One should really
have used a renormalized interaction in which such
higher order terms are taken into account as well as
possible. Very likely the assumption of two-particle
interactions is a reasonably good one, so that the only
eGect would be a redefinition of the interaction constant
V in terms of microscopic quantities.
The discussion of the matrix elements in Sec. IV

should be a good starting point for calculation of
transport properties in the superconducting phase. Our
excited state many-particle wave functions are not

much more dificult to use in such calculations than the
determinantal wave functions of the Bloch theory.
For calculation of boundary energies and related

problems, one would like to introduce an order param-
eter which can decrease continuously from an equi-
librium value for the superconducting phase to zero in
the normal phase as the boundary is crossed. The
Ginsburg-Landau theory and its extensions' appear to
give a good phenomenological description of such effects.
Perhaps the energy gap, 2eo, or, what is equivalent,
the coherence distance, $s, could be used for such a
parameter.
Another problem, not yet solved, is the calculation

of the paramagnetic susceptibility of the electrons in a
superconductor, such as is required to account for
Reif's data' on the Knight shift in the nuclear para-
magnetic resonance of colloidal mercury. Our ground
state is for total spin $=0. It is possible that there is
no energy gap between this state and those for S/0.
While a 6nite energy is required to turn over an
individual spin, it might be possible to construct states
analogous to those used in spin-wave theory in which
each virtual pair has a small net spin, and for which
the energy varies continuously with S.The explanation
of the observed electronic paramagnetism (about two-
thirds that of the normal metal) would then be similar
to that suggested by Reif himself.
In view of its success with equilibrium properties,

it may be hoped that our theory will be able to account
for these and for other so far unsolved problems.
The authors are indebted to many of their associates

for discussions which have helped to clarify the prob-
lems involved, We should like to mention particularly
discussions with C. P. Slichter and L. C. Hebel on
calculation of matrix elements, with D. Pines on the
criterion for superconductivity, and with K. A.
Brueckner on the exactness of the solution for the
ground state.

APPENDIX A. CORRECTIONS TO GROUND
STATE ENERGY

We may estimate the accuracy of our superconducting
ground state energy, 8'0, measured relative to that of
the normal state, by making a perturbation theory
expansion, using the complete set of excited state
superconducting wave functions as the basis functions
of the expansion. We first consider the reduced, H„g,
which includes only pair transitions for pair momentum
q=0, and then the eBect of the neglected portion of
the Hamiltonian, e'= II—a„d.
To the second order, the ground state energy of H„&

1S:

=We+ ~a"'+
's F. Reif, Phys. Rev. 106, 208 (1957).

20 parameters essentially 0 parameters



What do we do about all the parameters?

1.  Give up, biology really is just complicated.

2.  Nature has selected mechanisms in which 
parameters don’t matter: functions are “robust.”

3.  The parameters chosen by Nature are special.
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*But all the nonsense is my fault.

Before we dig in, let me emphasize that 
I didn’t come to these views alone.*
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Example: How do we use our vision to estimate the 
speed of a moving object, or our own speed?

Imagine taking a slice through an 
image, and following it in time …
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Detect the lines: 
compute differences.

slope

=


speed



But if our image of the 
world is a little noisy …

taking differences 
makes a mess!
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Noise sets a limit to the accuracy 
of motion perception.


Real brains approach this limit.
100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000



difference between

neighboring pixels

difference from

one moment 

to the next

fast forward

fast backward

Crucially, the “best” estimate always is a compromise

between systematic and random errors.

Real world data
SR Sinha & RR de Ruyter van Steveninck

Even if you do the optimal 
computation, you can be fooled.

Statistical mechanics and visual signal processing.  
M Potters & W Bialek, J de Physique France I 4, 1755-1775 (1994).



How do animals 
establish their 
body plans?



Pair rule genes

Gap genes

Primary maternal morphogens

GtKni Gt

Pair-rule outputs

a

x*
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(decoding dictionary)

P(x*|x)
(decoding map)

Gap genes
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Bcd Tor Nos

Maternal 
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Imagine how many 
parameters are 
hidden in this 

diagram …



cephalic

furrow

Precision: 1% of embryo 
length, or ± 1 cell (!).

A hint: this process is extraordinarily precise



~1000 molecules
~10% differences

But the cells cannot “stand outside” to look 
at all the molecules.   

In order to have an effect, molecules must 
bind to a small target along the cell’s DNA.

size of nucleus ~ 6 microns 
target site on DNA ~ 3 nanometers 

suppose the nucleus were the size of 
our local neighborhood, ~ 1 km 

the target would be 1/2 meter in size!

3/21/18, 11(02 AMuniversity of virginia - Google Maps

Page 1 of 1https://www.google.com/maps/search/university+of+virginia/@38.0338412,-78.4956688,15z

Map data ©2018 Google 1000 ft 

university of virginia

zoom in on the primary 
morphogens



Could the parameters be chosen to squeeze 
as much information as possible out of the 

limited number of molecules? 11

FIG. S3: Coding and decoding of position in the fly embryo based on expression of a single gap gene. a.
Optical section through the midsagittal plane of a Drosophila embryo with immunofluorescence labelling for Krüppel (Kr)
protein. Raw dorsal fluorescence intensity profile of depicted embryo (blue) and encoding probability distribution P (Kr|x)
(gray) constructed from 38 wild-type embryos of ages between 40–44 min into nuclear cycle 14. Position x along the anterior-
posterior axis is normalized by the length L of the embryo; x/L = 0 corresponds to the anterior end of the embryo, and
x/L = 1 corresponds to the posterior end. Probability distribution of Kr expression levels (right). b. Decoding probability
distribution P (x|Kr) constructed via Bayes’ rule from the measured probability distributions P (g) and P (g|x) in a, using a
uniform prior P (x) = 1/L. The distribution P (x|Kr) is the optimal decoder, which maps Kr levels to positions along the
AP axis. For example, the probability distributions of locations x consistent with observing Kr levels 0.05, 0.5, or 1 (main),
are the conditional probability densities P (x|Kr) shown in the three top panels. c. Decoding map P↵

g (x⇤|x) for a single
embryo (depicted in a), where ↵ is the embryo index, running from 1 through 38. For three locations, cartoons (top) display
uncertainties and ambiguities in determining location in the embryo baed on Kr alone. Importantly, only single-gene decoders
(e.g. the distribution P (x|Kr) in b) can be directly visualized (decoding with two genes, for instance, requires a 4-dimensional
visual representation). Decoding maps P (x⇤|x), however, can be visualized for an arbitrary number of genes.

along the AP axis. Comparing the covariance matrix es-
timates across replicates of wild-type datasets, Fig S2g
shows that our data are su�cient for us to have control
over estimation errors, so that Eqs (S3-S4) can likewise
be applied directly to the data.

Appendix C: The decoding dictionary

Figure S3 shows a step-by-step procedure for con-
structing a “decoding dictionary” based on a single gap
gene, Kr, from measured data, and a “decoding map” for
a single wild-type embryo; the decoding map in Fig 2a
is an average over 38 such individual decoding maps.
Similarly, top panels of Fig S4a-d show the profiles of
all four individual gap genes in the wild-type embryos,
while the bottom panels show the corresponding decod-
ing maps. As with the case of Krüppel in Fig S3, all of
these maps show substantial ambiguities, where the sig-
nal at one point in the embryo is consistent with a wide
range of possible positions. Ambiguity arises whenever a
vertical slice through these density plots encounters mul-
tiple peaks, but in the case of decoding based on single
genes these ambiguities are so common that they result

in either vast swaths of grey or in intricate folded pat-
terns. In particular locations—specifically, at the flanks
of mean expression profiles where the slope of the profile
is high—the distributions P (x⇤|x) become highly concen-
trated, indicating that the quantitative expression levels
of individual genes provide the ingredients for precise in-
ferences of position, as suggested in Refs [9, 17].
Figure S4 shows that combining two genes always re-

duces ambiguity relative to the single gene case, but does
not eliminate it entirely, and a similar trend is observed
in Fig S5 with triplets of gap genes. The four-gene case
shown in Fig 2c sharpens the decoding maps further (cf.
the scale of distributions P (x⇤|x)), achieving a low posi-
tional error of ⇠ 1.5% across the majority of locations
along the AP axis. We can quantify this sharpening
by computing the standard deviation of the distribution
P (x⇤|x), and then finding the median over x; a summary
of these results is given in Fig S7d.
Figure S7 further shows that the traditional interpreta-

tion of gap genes as generating binary domains of expres-
sion separated by sharp boundaries significantly blurs
the decoding map, irrespective of whether the gap gene
thresholds are selected simply at the midpoint of the ex-
pression range (at g = 0.5) or are adjusted separately for



If you put together information from all four gap 
genes, the ambiguities are resolved.
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FIG. S7: Decoding based on traditional binary, threshold-based readout is imprecise and ambiguous. a. Decoding
from gap genes being ON or OFF, with ON state declared when they are expressed at more than half of their maximum mean
level (top). b. As in a, but with thresholds set so that the mutual information between x8 and x is maximized. c. Decoding
map based on graded variations in gap gene expression, replica of Figure 2d for comparison. d. Precision of decoding based
on di↵erent combinations of genes. We compute the standard deviation of the distributions P (x⇤|x) and then compute the
median over all x. Results are plotted for decoding based on all combinations of 1, 2, and 3 genes, all four genes (“graded”),
and four genes thresholded into on/o↵.

FIG. S8: Gap gene expression levels in mutants largely overlap those observed in wild-type embryos. Normalized
sqaured deviation �2 between observed and mean expression of all four gap genes. As explained in the text, we compute this
directly for wild-type embryos, while for mutant embryos we compute the minimum �2 over all possible correspondences to
wild-type positions. a. Cumulative probability (y-axis, log scale) as a function of �2 per gene—�2 from Eq (S4), divided by 4.
It represents the probability that �2 per gene is greater than the value on the x-axis in wild-type embryos (red), and mutant
embryos (black). Vertical dashed line marks the maximal �2 observed in wild-type data set; the intersection of dashed line with
black line shows that this variation in wild-type encompasses 98% of the points in mutants. b-g. �2 per gene for individual
mutant embryos as a function of position along the AP axis (grey lines), together with (more conservative) limits on the largest
�2 per gene observed in wild-type embryos in that particular batch (1% of the wild-type embryos have �2 per gene values larger
than denoted by the horizontal red dashed lines); we observe values of �2 per gene which are below the red dashed lines in
⇠ 90% of the positions,.

1% precision No parameters! 
But is this the rule that 

the fly uses for “decoding”? 

Let’s look in mutants, 
where we knock out one of 

the primary maternal 
morphogen inputs …
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FIG. 3: Using decoding maps to predict stripe locations in mutant embryos. Average decoding maps for six maternal
mutant backgrounds: a. etsl; b. bcd

E1; c. osk; d. bcd
E1

osk; e. osk tsl; f. bcd
E1

tsl. The average locations of wild-type Eve
stripes (horizontal dotted lines) are used to predict Eve stripes in the mutant backgrounds: we expect to observe stripes at
locations along the mutant embryo axis, where the horizontal dotted lines intersect the peak of the probability density (open
black circles and vertical dotted lines). Measured Eve expression profiles in wild-type embryos (left side of a and d), and in
mutant embryos (below the corresponding decoding map); individual profiles (gray), mean profile (black), and peak locations
(black dots). Horizontal starred bars (panels b and f) indicate locations where the expressed number of Eve stripes is variable
(see Fig. S10 and Fig. S11 for examples). When the horizontal lines intersect a broad probability distribution, we expect to
observe di↵use Eve stripes as in e (see Fig. S10 for example). The red star in c shows an observed Eve stripe which is not
predicted by the decoding map. Panel a shows additional predictions for Run (cyan) and Prd (magenta) stripes, which also
agree with measured peak positions (see also Figs S12 and S13).

0.3 < x/L < 0.85, as shown in detail in Fig 3a. These
markers trace the predicted ridge of maximal probability
with very high accuracy.

The results for all the eve, run, and prd stripes in all six
mutants are summarized in Fig 4. For almost all the 57
stripe positions shown, the predicted position agrees with
the measured position within the error bar defined by the
standard deviation of these positions across embryos in

our sample. More subtly, when we decode the positional
signals from multiple embryos, we find variations in the
resulting maps, as noted above, and the standard devia-
tion of predicted stripe positions are in most cases close
to the observed variations (vertical and horizontal error
bars, respectively).

We do note a small number of errors in our predic-
tions. In the osk mutants we observe a posterior Eve

Decoding from mutant flies generates distorted “maps.”

When the map points 
to a position where 

the normal fly makes a 
stripe, the mutant 

should make a stripe. 
And it does.
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